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Abstract-A theoretical investigation is made of the process of free convection melting of a solid slab by 
an overlying hot liquid pool. The solid, when molten, is lighter than and miscible with the pool material. 
Systematic mathematical approximations to the Boussinesq equations of motion are performed to 
determine the behavior of the temperature and the concentration fields in two different flow regions. These 
are the boundary layer region at the melting interface and the turbulent core region in the bulk pool. The 
dependence of the melting rate on various controlling parameters, including the Grashof number based 
on the pool-to-substrate density ratio, the external Stefan number based on the pool-to-substrate 
temperature difference, and the internal Stefan number based on the freezing-point depression, is obtained 
by matching the boundary layer solution and the turbulent core solution in the region of overlap. 

Comparison of the present theory is made with existing experiments and found to be good. 

1. INTRODUCTION 

THIS paper deals with the process of downward 
penetration of a horizontal solid substrate by an 
overlying hot liquid pool, a problem that has received 
considerable attention in the area of decay heat 
removal in nuclear reactors. The situation arises 
following a postulated severe core meltdown accident 
in a nuclear reactor when a layer of molten fuel or 
fuel-steel mixture comes in contact with the hori- 
zontal surface of a sacrificial bed. The sacrificial bed 
material, when molten, is miscible with and lighter 
than the core melt. Thus, the rate of melting is strongly 
dependent upon the motion of free convection in the 
melt layer driven by the density difference between 
the core melt and the molten sacrificial bed material. 
Understanding of the mechanism of the free convec- 
tion melting process is essential to the design of a 
core-retention system. 

A rather large number of studies have been per- 
formed on melting of solids in free convection flows, 
as can be seen in several recent review articles [l-3]. 
Most of these studies, however, have been motivated 
by the need to gain an understanding of heat transport 
in latent-heat-of-fusion energy storage systems where 
the melting solid and the liquid are of the same 
materials [4-lo]. As such, the motion-driving buoy- 
ancy force is simply due to the variation of liquid 
density with temperature. In the problem under 
consideration here, the situation is quite different 
since the solid and the liquid are of different materials. 
The free convection motion is driven primarily by the 
sharp concentration or density gradient near the 
solid-liquid interface produced by melting of the 
solid. As a result, the melting rate not only depends 
on the temperature difference across the liquid layer, 
but also is a strong function of the density difference 
between the liquid and the substrate. Thus the present 

work falls into the category of double-diffusive convec- 
tion [ll, 121. 

The first study of the melting and the associated 
convective motions in a heated liquid pool above a 
melting miscible substrate was performed by 
Farhadieh and Baker [13]. They used water soluble 
wax (polyethylene glycol) as the solid material and 
an aqueous salt solution heated by a suspending 
planar heater as the overlying pool to conduct the 
exploratory experiment. Various values of (Ap/p,), 
where Ap is the difference between the bulk pool 
density, po, and the melt density, P,,,, were employed 
in their experiments by changing the salt concen- 
tration in the liquid pool. A sharp concentration 
boundary layer was observed to exist near the solid- 
liquid melting interface. Extending from discrete sites 
of these boundary layers into the overlying heavier 
solution were melt fingers that injected melt materials 
into the liquid pool. The melt fingers lost their 
identities in the turbulent core region as a result of 
the intensive mixing motions there. This flow behavior 
is, in fact, quite similar to those observed in turbulent 
thermal convection in a horizontal fluid layer above 
a heated surface where the major resistance to heat 
transfer is contained in a thin boundary layer at the 
surface from which plumes of hot fluid or ‘thermals’ 
are generated [14,15]. The heat transfer properties 
of this class of instability-driven flows have been 
determined experimentally in the absence of phase 
change for horizontal fluid layers heated from below 
[16-183, heated from within [19,20], and with com- 
bined internal and external heating [21,22]. 

In the range of 0.08 < Aplp, < 0.25, Farhadieh and 
Baker [13] found that the melting rate, V,, varied 
with the density ratio according to V, 5 (Ap/p,)‘13, 
which was consistent with a pool flow regime for 
ordinary turbulent convection. For ApIp,,, > 0.25, 
however, the melting rate was observed to vary 
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NOMENCLATURE 

integration constant, equation (43) 

integration factor, dependent of Pr and 
SC, equation (45a) 
integration factor, independent of Pr 
and SC, equation (45b) 
integration constant, equation (44) 
integration factor, dependent of Pr and 
SC, equation (46a) 
integration factor, independent of Pr 
and SC, equation (46b) 
concentration 
mean concentration 
mean concentration profile in the 
turbulent core region, equation (38) 
mean concentration at the melting 
interface 
bulk pool concentration 
specific heat 
mean concentration profile in the 
boundary layer region, equation (28) 
concentration difference across the 
boundary layer region 
mass diffusivity 
boundary layer temperature function, 
equation (45a) 
boundary layer concentration function, 
equation (46a) 
acceleration due to gravity 
turbulent-core temperature function, 
equation (45b) 
turbulent-core concentration function, 
equation (46b) 
modified Grashof number, equation 

(16) 
thermal conductivity 
unit vector in the vertical direction 
pool depth 
slope of the T-C freezing curve 
pressure 
mean pressure 
fluctuating pressure 
Prandtl number, v/a 
Reynolds number of the melting- 
induced flow, VLJv 
location of the melting interface with 
respect to the non-moving frame 
Schmidt number, vJD 
external Stefan number based on AT 
internal Stefan number based on ATd 
time 
temperature 
mean temperature 

AT, 

ATd 

AT, 

U 

V 

mean temperature profile in the 
turbulent-core region, equation (37) 
depressed freezing point at C, 
mean temperature at the melting 
interface 
normal freezing point 
bulk pool temperature 
mean temperature profile in the 
boundary layer region, equation (27) 
temperature difference between the 
bulk pool and the normal melting 
point of the substrate, To - Tmp 
temperature drop across the turbulent 
core region 
freezing point depression at CO, i.e. 
A’Td = Tmp - & 
temperature drop across the boundary 
layer region 
velocity vector 
mean velocity component in the 
vertical direction at the melting 
interface with respect to the moving 
frame, equation (15) 
substrate-penetration rate 
vertical component of the fluctuating 
velocity 
higher order quantity defined by 
equation (57) 
vertical coordinate in the moving 
frame 
higher order quantity defined by 
equation (58). 

Greek symbols 
thermal diffusivity 
isobaric coefficient of thermal 
expansion 
coefficient of solute expansion, 
equation (12) 
boundary layer thickness 
dimensionless boundary-layer 
coordinate, z/a 
fluctuating temperature 
heat of fusion of the solid substrate 
kinematic viscosity 
dimensionless turbulent-core 
coordinate, z/L 
liquid density 
liquid density at the melting interface 
density of the molten substrate, 

PO0 - YCO) 
bulk pool density 
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ps density of the solid substrate 
Ap density difference between the bulk 

solution pool and the molten substrate, 

PO-Pm. 

Subscripts 
0 bulk-pool conditions 
C turbulent-core conditions 
d freezing point depression 
i melting interface 

m molten substrate; moving coordinates 

: 
solid substrate 
boundary layer conditions. 

Superscripts 
mean quantities. 

Other symbols 
( ) r.m.s. value of the fluctuating 

quantities. 

according to V, _ (A~/P,)‘/~. They postulated that 
this sudden increase in the slope of the melting curve 
was due to a very vigorous turbulent flow regime, 
labeled as ‘upper turbulent’. Within this regime, the 
melting rate was found to increase sharply with the 
pool-to-substrate temperature difference according to 
v, = AT1.6. 

Similar studies were made later on by Catton et al. 
[23], Eck and Werle [24], Fang et a/. [25], and 
Epstein and Grolmes [26]. Catton et al. [23] used 
frozen benzene as the solid substrate and carbon 
tetrachloride or diiodomethane as the liquid pool 
material to yield high density ratios in the range of 
0.72 < Ap/p, < 2.26. They found that the melting 
rate was very sensitive to the variation of the density 
ratio as reported by Farhadieh and Baker [13]. 
However, over the range of experimental conditions 
explored in their work, the melting rate was independ- 
ent of the pool-to-substrate temperature difference. 

Eck and Werle [24] conducted a series of experi- 
ments similar to those of Farhadieh and Baker [13] 
by using the same working material with the difference 
that the grid heater was replaced by a flat plate. They 
also observed an abrupt increase in the slope of the 
melting curve in the so-called upper turbulent regime, 
although large quantitative discrepancies in the meas- 
ured melting rate were observed. The melting rate 
was found to be a linear function of AT rather than 
varying with AT1.6. Eck and Werle [24] attributed 
these discrepancies to the differences in the set-up 
of heater and thermal conductivities of test-section 
materials. 

In an attempt to investigate the melting behavior 
in various flow regimes, Fang et al. [25] performed 
an experimental study of free convection melting of ice 
in aqueous salt solutions. The solid-liquid interface 
morphology, the free convection flow pattern near 
the moving phase boundary, and the corresponding 
ice melting rate were observed at different density 
ratios. Their results indicated that there was no upper 
turbulent regime as postulated by Farhadieh and 
Baker [13]. The measured ice melting rate simply 
varied according to the l/3-power law in the entire 

turbulent flow region. Furthermore, the ice melting 
rate was almost independent of the pool-to-substrate 
temperature difference, as reported by Catton et nl. 
[23]. It should be noted that the values of AT 
employed by Fang et al. [25] were rather small, with 
a typical value of 15°C. 

Recently, Epstein and Grolmes [26] conducted 
an extensive laboratory study of the free convec- 
tion melting problem using various pool-substrate 
material pairs: KI salt solution overlying frozen 
polyethylene glycol (PEG) and ice, ZnBr, salt solution 
overlying frozen glycerol and ice, and Ccl4 overlying 
frozen benzene. They uncovered an unexpected strong 
effect of the initial solid PEG temperature on the 
melting rate. The unconventional melting trends 
observed by Farhadieh and Baker [13] and Eck and 
Werle [24] were evidently not due to an abrupt 
change in the turbulent flow regime but rather due 
to the unexpected properties of this polymer material. 
By carefully controlling the initial PEG temperature, 
Epstein and Grolmes [26] were able to eliminate the 
sudden rise in the slope of the melting curve. The 
melting rate was found to vary according to 
V, N (Ap/~m)‘/~ at high density ratios, consistent with 
ordinary turbulent convection flow. This confirmed 
the experimental observation of Fang et al. [25] that 
the upper turbulent regime does not exist physically. 
Epstein and Grolmes [26] also examined the effect of 
AT on the melting rate over a wide range of pool-to- 
substrate temperature difference for various material 
pairs. Their results showed that the melting rate was 
a linear function of AT. 

From the above review, it is evident that V, N 

(AP/P.,J"~ in the turbulent flow regime. However, the 
contradictory findings regarding the dependence of 
the melting rate on the pool-to-substrate temper- 
ature difference have yet to be resolved. So far, 
there is no physical explanation of observed melting 
behavior over the range of experimental conditions 
explored in laboratories. In addition, it is not known 
whether there are other important parameters that 
would strongly affect the free convection melting 
process. It is, therefore, highly desired to develop a 
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sound physical model based on the conservation laws 
to (i) describe the physical process of downward pool 
penetration, (ii) identify the appropriate controlling 
parameters, (iii) determine qualitatively and quantit- 
atively the effects of these parameters, and (iv) explain 
the various experimental observations, particularly 
the data on the E-AT relation. These provide the 
major motivations for the present study. 

2. THEORETICAL FORMULATION 

Consider the process of downward penetration of 
a horizontal solid substrate by an overlying hot 
solution pool. The substrate, when molten, is miscible 
with and lighter than the solution. Because of the 
density difference between the substrate and the 
solution, instability-driven free convection flow occurs 
in the pool as melting proceeds. Both the density 
difference and the depth of the pool are assumed to 
be large such that the flow is turbulent. On the other 
hand, the total penetration distance is small compared 
to the depth of the pool so that the bulk pool 
concentration, C,,, and the corresponding bulk pool 
density, p,,, can be treated as constants during the 
free convection melting process. Assuming the fluid 
to be incompressible and its properties to be constant 
except density variation in the buoyancy force, the 
equations governing the convective motions are 

v*u=o (1) 

(a/at - vV2)u = -(U’V)U 

- PO % - kg(PlP0) (2) 

(a/at - aVZ)T= -(u.V)T (3) 

(a/at - DV)C = -(u * V)C. (4) 

For the case of small total penetration distance 
relative to the depth of the pool, laboratory observa- 
tions [13,23-263 show that the melting rate and 
the mean quantities are essentially steady and one- 
dimensional. Thus, we may transform the above 
equations to a moving coordinate system fixed to the 
solution pool-solid substrate interface to remove the 
time dependence of the mean quantities. With the 
interface position given as zi = S(t), we write 

z = z, + S(r) and 
dS 

w = w, + X (5) 

where z, and w, are the vertical coordinate and the 
vertical velocity component in the moving frame, 
respectively. Decomposing the dependent variable 
into the mean and fluctuating parts, we have 

T= T+ 8, T= T(z,), 8=0 (6a) 

c = C + 4, C= C(z,), $= 0 (6b) 

v=_ds u =O. s dt’ m (6c) 

With the substitution of equations (5) and (6) into 
equations (l)-(4) the governing equations with the 
subscript m dropped for clarity become 

,$Cd;;g=O 
dz2 dz 

(a/at - vv2)u = -(u.V)u - p;‘Vp + kgyq5 (9) 

(a/at - aV2)8 = -w g - [(u . V)0 - (iSj3] (10) 

(a/at - DV)f#l = -w 2 - [(u . V)c$ - (njq] 

(11) 

where p = P - P - pO? is the fluctuating pressure 
and y is the coefficient of solute expansion given by 

yJaP 1 PO-P 
pac-p,C,- (12) 

In writing equation (9), we have assumed the density 
difference between the substrate and the solution to 
be sufficiently large so that the effect of thermal 
expansion can be ignored. Mathematically, this 
requires yAC >> BAT, which has been satisfied in all 
the experiments [ 13,23-261 discussed in the previous 
section. 

The boundary conditions for the above system of 
equations can be derived from the no-slip condition, 
the freezing curve, and the conservation of mass, heat, 
and solute. In the bulk solution pool, i.e. z - L, we 
have 

T=T,, c=co, p=po (13) 

where To and Co are given quantities and p. = 
p. (Co). At the melting interface, i.e. z = 0, we have 

I;e=G$=o, T=T, c=ci (14a) 

Tmp - T = mCi (1W 

d7 dT II, 
kZ=p,l,V or a;r;=c,V (144 

L&&VC.= VC. 
dz pi ’ ’ ‘ 

where V is the mean vertical velocity at the moving 
interface given by 

I/= _P,ds=P,J/ 
pi dc pi *’ 

(15) 

In writing equation (14b), the freezing curve has been 
approximated by a straight line with the slope equal 
to m. Equations (14c) and (14d) represent the heat flux 
and solute flux conditions at the interface, respectively. 
The initial substrate temperature is assumed to be at 
its melting point. Note that pi = p,(C,) and K, C,, and 
V are unknown quantities to be determined during 
the course of analysis. 
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Equations (7) and (8) may be integrated once using 
the boundary conditions at the interface to yield 

,C&13’” 
dz C, 

and 

dC - 
Ddz - wf#J = vci. 

(16) 

(17) 

The goal is to determine the dimensionless melting 
rate or the melting-induced Reynolds number, 
Re, = VL/v, as a function of the Prandtl number, 
Pr = v/a, the Schmidt number, SC = v/D, the external 
Stefan number based on the pool-to-substrate temper- 
ature difference, Ste = C&T, - T’,,)/I,, the in- 
ternal Stefan number based on the freezing point 
depression, Ste, = Cp(T,‘,p - Td)/lP, where Td is the 
freezing temperature of the bulk solution at Co (i.e. 
Td = TmP - mC,), and the modified Grashof number 

Gr = dAplpoF3 mCoL3 =- 
V2 V2 

where the last expression of the above equation has 
been derived from equation (12) with Ap = p,, - P,,, 

and pm = p(C = 0) = p,, (1 - y C,). Note that Co actu- 
ally represents the concentration differences between 
the bulk solution pool and the pure molten substrate. 

3. ANALYSIS 

_We consider the case of moderate Prandtl and 
Schmidt numbers where the velocity, thermal, and 
concentration boundary layers have about the same 
thickness. In what follows, we seek the temperature 
and the concentration behaviors in two principal flow 
regions of the solution pool. These are the boundary 
layer region where 0 < z < 6 and the turbulent core 
region where 6 < z < L. The functional dependence 
of Re, on Gr, Ste, and Ste, will be determined by 
matching of the boundary layer and the turbulent 
core solutions in the region of overlap. 

3.1. Boundary layer region (0 < z < 6) 
In this region, the wall effect is strong. We may 

assume that molecular transport dominates the 
corresponding eddy transport. Equations (16) and 
(17) may be approximated by 

and 

ACa _ IVC,I or D- _ VCi 
6 (20) 

where AT, and AC& are the temperature and the 
concentration drops across the boundary layer, 

respectively. In addition, we may ignore the advection 
term relative to the viscous term in the wall region. 
Thus, a balance between the viscous term and the 
buoyancy term in equation (9) gives 

where ( ) denotes the r.m.s. values and the subscript 6 
refers to the boundary layer. Similarly, from equations 
(10) and (1 l), we have 

laV281 = wg or a%- (w)~? (22) 
1 I 

and 

lDV2$l _ wz or DF _ 
I I 

(w),?. (23) 

Equations (19)-(23) lead to 

i N [GrRe,.,,Sc2(z)3”’ (24) 

Aq-$Pr[GrRe;3Sc2(-$1’” (25) 

and 

GrRei3Sc-’ 2 
-3 -l/4 

AC6 N (>I C 0. (26) 
0 

From equations (25) and (26), we may construct the 
near-field temperature and concentration profiles, ;Ib 
and Cd, respectively, in the boundary layer region as 
follows: 

;i;d = q + $Pr[GrRe,‘Sc’($]“;l($ (27) 

and 

Cs, = Ci + [GrRe~3Sc-‘(~)3~1’4Coj,(l) 

(28) 

where fi and f2 are unknown functions of rl to be 
determined in the course of analysis and r7 = z/6 is 
the dimensionless boundary layer coordinate. Since 
molecular transport is important in the flow region, 
both fi and f2 can be functions of the Prandtl number 
and the Schmidt number of the fluid. 

3.2. Turbulent core region (6 < z < L) 
In this region, the wall effect is not important. We 

may assume that eddy transport dominates over the 
corresponding molecular transport. Equations (16) 
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and (17) may be approximated by and 

WI - -I i -$v or (w),(e), - $v (29) 
P P 

and 

(30) 

where the subscript c refers to the turbulent core. In 
addition, we may ignore the viscous term relative to 
the advection term in the bulk pool region. Thus, a 
balance between the advection term and the buoyancy 
term in equation (9) gives 

where a length scale of mixing equal to the pool depth 
has been used in the above equation. Similarly, from 
equations (10) and (1 l), we have 

l(U~Wl “dT -w- I I or AT, w(O), (32) 

and 

or AC, - (4>, (33) 

where AT, and AC, are the temperature and concen- 
tration differences across the turbulent core region, 
respectively. Equations (32) and (33) imply that the 
values of AT, and AC,, being the same order as the 
fluctuating quantities, are small compared to the 
corresponding values of ATa and ACd. Thus, the 
temperature and the concentration profiles are relat- 
ively flat in the bulk solution pool, which have 
been observed ex~rimentally [ 13,23-26). Equations 
(29)-(33) lead to 

AC, _ ($>, - [Cr Re,’ ($~2j-‘i3C,. (36) 

From equations (35) and (36), we may construct the 
far-field temperature and concentration profiles, z 
and C,, respectively, in the turbulent core region as 
follows: 

C, = C, - [C~Rr.‘(~rl]li)C,p,(i) (38) 

where g, and g, are unknown functions of 5 to be 
determined in the course of analysis and c = z/L. 
is the turbulent core coordinate. Since molecular 
transport is not important in this flow region, both 
g, and g, are independent of Pr and SC. 

3.3. hatching of the boundary layer and the 
turbulent core soiutions 

The matching of the near-field and the far-field 
temperature and concentration profiles in the domain 
of overlap requires that r& (q --+ cc;) = Tc (4 -+ 0) and 
Ca (7 + co) = Cc (c -+ 0). From equations (27), (28) 
(37), and (38), we have 

= L<i%t TO - $-[GrRe_‘(2)11’:‘g,({) (39) 

Differentiating both sides of equations (39) and (40) 
with respect to z, we yield 

6 4’3 ag, pr&-2’3~(~+ 0) = - i 0 @ -+ 0) (41) 

and 

&ld?,& --, co) = _ 6 4’3% 
att 0 L ,,ct; -+ 0) (42) 

where equation (24) has been employed in deriving 
the above equations. Since 6/L = (z/L)/(z/G) = t/q, it 
follows that 

Limit Pr Sc- 
a 213 413 _._L = Limit _ 54’3 _Q - +4e/3 q W 

1-m aq 5-o X - 
(43) 

and 

Limit Se’{3 q4/3 g = Limit - r413 g = 8,/3 (44) 
n-m 5-o 

where A, and B. are constants, independent of q and 
5. Integration of the above equations leads to 

f, = -AoPr-‘Sc2’3q-1/3+At for q-+a: 
(46a) 

g, = Ao<-i’3 -t- A, for 5 + co (4Sb) 
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and 

f* = -B,Sc-“‘q-l” + B, for rj + cc (46a) 

g, = B,t- 1’3 + Bz for 5 -+ 0 (46b) 

where Al, AZ, B,, and B, are constants of integration. 
Note from the properties of fr , f2, gr , and g, that A, 
and B, are functions of Pr and SC whereas A, and 
B, are independent of Pr and SC. The fact that (jr ,gr) 
and (f2,g2) are of the same form is evidently due to 
the similarity between the turbulent heat and mass 
transport processes. Substituting equations (45) and 
(46) into equations (39) and (40), respectively, we 
obtain 

T + $Pr[GrRei3 Sc2@l’!‘A, 

= TO - $[GriZe;2(~)1”3A2 (47) 

(>I 
- I,4 

Ci+ GrRe;‘Scm2 $ 

=CO-,Gr::-3 ( 

COB, 

2 ci -2 -1’3 ) 
m c, 

] COB2 (48) 

where the terms involving A,, and B,,, respectively, 
have been eliminated from the above equations using 
the expression for S/L as given by equation (24). 

Since A, and B, are functions of Pr and SC, we 
may absorb the term Pr SC- ‘I2 on the left-hand side 
of equation (47) in A, and the term SC’/’ on the left- 
hand side of equation (48) in B, After rearrangement, 
equations (47) and (48) become 

C,(& - q 
I, ’ = [GrRe~3(~)1’i4 

x {A, + A2[GrRe,,,(~)~1’12) (49) 

and 

x (B’ + B2[GrRe.($)11’12). (50) 

From equation (14b) together with the relation, 
(Tmp - 7J = mC,, we have 

Equation (49) may now be written as 

1 + z(2) = Steml[GrRe;“(-$)l”’ 

x {Al + A2[GrRem(z)3”“). (52) 

For given values of Pr and SC, equations (50) and (52) 
completely describe the dependencies of (C&J and 
Re, on Gr, Ste, and Ste,. Note that A2 and B2 are 
true constants, independent of Pr and SC, although 
A, and B, are strong functions of Pr and SC. 

3.4. Melting rate correlations 
For moderate values of Pr and SC, we may expect 

A,, A, and B,, B, to be of the same order of mag- 
nitude. At very high Grashof numbers, the term 
[Gr Re,(C&)]- l/l2 may be neglected from equa- 
tions (50) and (52). This gives 

1 - 2 = Bl[GrRe;3($)3~1’4 (53) 

and 

1 + z(z) = A,Stem1[GrRe~3(~)1”4. 

(54) 

Solving for (CJC,) and Re,, we have 

ci- 
[(l+~SteJ+4~Sted]l'2-(l+~Ste) 

co - 2+Sted 
AI 

(55) 

and 

~~ 
m 

= t1 - cilcO)4’3 ~~113, 

Bf’3(CiICO) 
(56) 

The above expressions for (C&-J and Re, are exact 
only if Gr -+ co. However, if Gr is not sufficiently large, 
higher-order approximations are required. These can 
be obtained using equations (55) and (56) to get 

ci- 
[(Z+$SteJ+4Z$Sted]L”-(Z+2Ste) 

CO - 2$Sted 
1 

and 

(57) 

C,(T, - 7J c 
& s 

= ;i’ (T, - Tmp) + Z(T,, - Td) 
0 1 

. 

~~ 
m (58) 

(51) where the higher-order quantities Y and 2 are given 

by 
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(59) 

1 +$Y 
Z=‘. 

l+FY 
(60) 

1 

With the above equations, it is possible to determine 
how (CJC,) and Re, deviate from their asymptotic 
behavior (as described by equations (55) and (56)) for 
the case when Gr is not sufficiently large. 

4. RESULTS AND DISCUSSION 

We have identified five important parameters that 
control the dimensionless melting rate of the Reynolds 
number, Re,. These parameters are the Grashof 
number, Gr, the external Stefan number based on the 
liquid superheat, Ste, the internal Stefan number 
based on the freezing-point depression, Ste,, the 
Prandtl number, Pr, and the Schmidt number, SC. 
Since the present analysis has been restricted to 
moderate values of Pr and SC, the exact dependence 
of Re, on Pr and SC cannot be determined. Rather, 
these material-property effects are represented 
through the terms involving A, and B,. For given 
pool-substrate material pairs, however, A, and B, 
are constants. Thus, we may focus only on the separate 
effects of Gr, Ste, and Ste,. These are given implicitly 
by equations (SO) and (52), and explicitly by equations 
(56) and (58). 

Figure 1 shows the variation of the dimensionless 
interface concentration (C&J with Ste and Ste,. 
In constructing this figure, we have assumed 
AZ/A1 = BJB, in equations (45) and (46) based on 
the argument that the processes of turbulent heat and 
mass transport are similar. This argument is deemed 
appropriate because turbulence is a flow property 
that acts to transport quantities equally. It follows 
that equation (57) may be reduced to equation (55). 
Hence, (CJC,) is a function of (B,/A,)Ste and 
(B,/A,)Ste, only and is independent of Cr. This is 
true as long as the flow is fully turbulent or equival- 
ently, the value of Gr is very large. From Fig. 1, it is 
evident that (CJC,) is a monotonically decreasing 
function of Ste, and Ste. For a given value of 
(B,/A,)Ste,, (C&) approaches asymptotically to 

zero as Ste + cc whereas it approaches a 
constant value less than unity as Ste + 0. 

The effects of Gr, Ste, and Ste, on the dimensionless 
melting rate, Re, are displayed in Fig. 2, where the 
quantity, Bf/3 Re,/Gr”3, is plotted against (B,/A,)Ste 
on a log-log scale with (B,/A,)Ste, as a parameter. 
The results for two different values of Gr, i.e. Gr -+ 
03 and Gr = 1 x 109, are shown in the figure. It is 

evident from equations (56) and (58) that Re, would 
vary approximately according to the l/3-power of Gr 
at large Grashof numbers. This is demonstrated in 
Fig. 2. For all values of Ste and Ste,, the quantity, 
Re, jGr113, is indeed a weak function of Cr. Thus, to 
the first approximation, we may expect the melting 
rate to vary with the pool-to-substrate density ratio 
according to I/ - (Ap/p,) ‘13. This result is consistent 
with the experimental observations of Fang et al. [25] 
and Epstein and Grolmes [26]. For a given value of 
Gr, Re, is a monotonically increasing function of Ste 
and Ste,. In fact, as Ste --+ co, Re, is a linear function 
of Ste for all values of Ste,. Thus, we have V _ AT 
for Ste >> 1 (high temperature region). This linear 
dependence of the melting rate on the pool-to-sub- 
strate temperature difference has been observed by 
Eck and Werle [24] and Epstein and Grolmes [26]. 
However, except for the limiting case of Ste, = 0, the 
value of Re, does not approach zero as Ste + 0. 
Rather, Re, approaches a positive, non-zero, constant 
value at small Ste. From Fig. 2, it is evident that for 
Ste < O.lSte,, Re, is almost independent of Ste as 
long as both Ste and Ste,, are non-zero, positive 
quantities. Under this situation, the melting rate is 
insensitive to the variation of the pool-to-substrate 
temperature difference. This explains qualitatively the 
experimental observations of Catton et al. [23] and 
Fang et al. [25]. 

To further explore the effects of Ste and Ste, on the 
dimensionless melting rate in the small-Ste regime 
(low-temperature regime), the quantity, B413 Re J 
Gr’/3 is plotted against (B,/A,)Ste on a regular 
scale with (B,/A1)Sted as a parameter (Fig. 3). Again, 
two different values of Gr, i.e. Gr + cc and 
Gr = 1 x 109, are shown in the figure. For given 
values of Gr and Ste,, Re, is a non-zero positive 
quantity provided that Ste > -Ste,. Thus melting of 
the solid substrate would occur even though the bulk 
pool temperature, T,, is below the normal melting 
point of the solid. Mathematically, we have V > 0 for 
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FIG. 1. Variation of the dimensionless interface concentration with the external and internal Stefan 
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FIG. 2. Effects of the Grashof number, the external Stefan number, and the internal Stefan number on 
the dimensionless melting rate. 

TO > Td. Inspection of Fig. 3 indicates that the various @j3 Re,,JGW, against @,/A,) (Ste + Ste,). This is 
curves for a given Gr (either those represented by the shown in Fig. 4. It is evident that for small values of 
solid lines or those by the dashed lines) are very (Ste + Ste,), we have 
similar. This implies that we may be able to combine 

>(Ste + Ste,) 1 
1.33 

these curves into one by plotting the quantity, @I3 Re,/Gr”’ = 1.09 . (61) 
1 
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FIG. 3. Variation 

- Gr+o;, 

_-- Gr,= I x 10’ 
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of the dimensionless melting rate with the external and the internal Stefan 
the low-temperature regime. 

numbers in 
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FIG. 4. The combined effect of the external and the internal Stefan numbers on the dimensionle~ melting 
rate in the low-temperature regime. 

Significant deviations from the above equation occurs As AT+ 0, the melting rate approaches a constant 
only when @,/A,) (Ste f Be,) > 0.1. In terms of the value proportional to A7’i.33. So far, this important 
original physical quantities, we have melting regime has not been studied in previous work 
Y w (AT + AT,)1.33 in the low-temperature regime. [13,23-263. 
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It is of interest to estimate how large the value of 
Gr is required in order that the asymptotic behavior 
of Re, as given by equation (60) is rigorously satisfied. 
Also, it is important to determine how Re, deviates 
from its asymptotic behavior at lower Grashof num- 
bers. In Fig. 5, the ratio, Re,/Re, (Gr -+ m), is plotted 
against Gr/B, with (B,/A,)Ste and (B,/A,)Ste, as 
parameters. It is evident that Re, would achieve 
its asymptotic value with less than 1% error only 
if Gr/B, > 1 x 1020. Below this Grashof number, we 
have Re, < Re, (Gt -+ co). If we correlate the Re,- 
Gr relation by a simple power-law, i.e. Re, N Gr”, the 
index n would be less than l/3 for GrIBI < 1 x 1020. 
The deviation is larger at lower values of Gr, Ste, and 
Ste,. Nevertheless, for Gr/& b 1 x IO9 and (&/Al) 
x (Ste + Ste,) > 0.1, it can be shown that Rem can 
be approximated by its asymptotic value with less 
than 20%. In most cases, these requirements for Gr, 
Ste, and Ste, are usually met, and hence we may 
determine the melting rate using equation (56) as a 
first approximation. 

The validity of the present model requires the 
quantity [Gr Re,,,(Ci/Co)] , ‘/’ to be much larger than 
one. It is, therefore, necessary to determine the ranges 
of Gr, Ste, and Ste, for which this condition is met. 
From equations (55) and (56), we have 

AT = 24°C corresponding to Ste = 0.3, with a pool 
depth of L = 0.14m. The data of Fang et al. [25], on 
the other hand, were taken at AT = 15”C, correspond- 
ing to Ste = 0.19, with a pool depth of L = 0.123m. 
Equations (55) and (56) are employed along with 
equation (15) to determine the value of V,. The 
physical properties used in the calculations are C, = 
4.18 kJ kg-’ K- I, I, = 330kJ kg- I, ps = 0.92 x 
lo3 kgme3, and v = 1.3 x 106m2 s-l. Since 

Ste, < 0.1 over the experimental conditions explored 
in refs. [25,26], we have 

Equations (55) and (56) may be reduced to 

64 

Using two typical data points of Epstein and Grolmes 

Gr&,, 2 1’3 = 01 ( (62) 

If we arbitrarily set [Gr/Re,(Ci/CJJ*‘3 > 100 to be 
the criterion, this requires 

Gr 
B,’ (63) 

In most free convection melting problems, we may 
expect A, N B, and (Ste + Ste,) > 0.03. Under these 
conditions, the above inequality is satisfied as long as 
Gr/B, > 1 x 106. Note that A, and B, are functions 
of Pr and SC and must be determined for each pool- 
to-substrate material pair. 

To further examine the validity of the present 
model, comparison of the predicted results are made 
with the experimental data of Fang et al. [25] and 
Epstein and Grolmes [26]. Figure 6 presents the 
measured and the predicted variations of the melting 
rate, V,, with the pool-to-substrate density ratio, 
Ap/po, for the case of ice melting in KI solution. The 
data of Epstein and Grolmes [26] were taken at 

[26], i.e. V, = 0.052 and 0.066 mm s- ’ for 
(Ap/po) = 0.1 and 0.2, respectively, the values of A, 
and B, are determined to be A, = 15.5 and B, = 31.9. 
Note from equation (65) that the melting rate is 
independent of the pool depth, L, since Re, _ G&j. 
Based on these values of A, and B,, the predicted 
variations of V, with (A~/po) are shown in Fig. 6 for 
the case of Ste = 0.19 and the case of Ste = 0.3. 
Evidently, the present results compare favorably with 
both sets of data. Using the same values of A, and 
B,, the predicted variation of V, with the pool-to- 
substrate temperature difference, AT, is shown in 
Fig. 7 for the case of (A~/po) = 0.38, co~esponding 
to Gr = 8 x 10’. Also shown in the figure are the 
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FIG. 5. Deviation of the dimensionless melting rate from the asymptotic behavior at different Grashof 
numbers. 
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FIG. 6. The measured and the predicted variations of the melting rate with the pool-to-substrate 

ratio at two different external Stefan numbers for the case of ice melting in KI solution. 
density 

experimental data of Epstein and Grolmes [26]. 
Again, there is good agreement between the measured 
data and the predicted results. Within the range of 
AT displayed in the figure, the melting rate can be 
correlated to the temperature difference as I/ N AT’.2. 

5. CONCLUDING REMARKS 

We have identified the effects of Gr, Ste, and Ste, 
on the dimensionless melting rate, Re,. In particular, 
we have shown that at large values of Gr, the melt- 

ing rate is approximately proportional to the pool- 
to-substrate density ratio raised to the l/3 power, 
i.e. V, 5 (Ap/p,)‘l’. However, at lower values of Gr, 
considerable deviation from the l/3-power-law be- 
havior may occur with V, _ (Ap/p,)” where n is less 
than l/3. We have also demonstrated that in the high- 
temperature regime, corresponding to large values of 
Ste, the melting rate is a linear function of the pool- 
to-substrate temperature difference, i.e. V, w AT. This 
is consistent with the experimental observations of 
Eck and Werle [24] and Epstein and Grolmes [26]. 
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FIG. 7. The measured and the predicted variations of the melting rate with the pool-to-substrate 
temperature difference at a density ratio of 0.38 for the case of ice melting in ZnBr, solution. 

On the other hand, in the low-temperature regime, 
corresponding to small values of (Ste + Ste,), the 
melting rate is given by V, w (Ste + Ste,)1.33. As Ste + 

0, V, approaches a non-zero, positive, constant value 
proportional to Ste; ’ 33. Thus, the melting rate is quite 
insensitive to the variation in the pool-to-substrate 
temperature difference for small values of Ste. This 
explains the experimental observations of Catton er 
al. [23] and Fang et al. [25]. Additional experimental 
data, however, are needed to confirm the melting rate 
behavior in the low-temperature regime, especially 
regarding the effect of freezing-point depression, i.e. 
the parameter Ste,. 

In the present analysis, the effect of Pr and SC are 
implicitly represented by the terms involving AI and 
B,. The functional forms of A, and B1 can be 
determined empirically by setting AI = a Pr’“l SC”J 

and B, = bPr”l S&. Unfortunately, there are not 
sufficient data available for us to determine the 
coefficients a and b and the indices m,, m2, n1 and 
n2. Additional experimental studies covering a wide 
range of pool-substrate material pairs with selected 
values of (Ap/pJ and AT are required to determine 
the dependence of A, and B, on Pr and SC. It should 
be noted that in some cases, the viscosity of the 
convecting fluid may vary by several orders of mag- 
nitude across the pool. As a result, the turbulent core 
properties can be quite different from the constant- 

viscosity case [27]. The effect of property variation 
needs to be further examined. 
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CONVECTION NATURELLE DE CHALEUR ET DE MASSE PENDANT LA 
PENETRATION DANS UN SUBSTRAT MISCIBLE EN FUSION 

R&aun&-Gn Ctudie thtoriquement le meeanisme de fusion libre dune plaque solide surmont&e d’une masse 
de liquide chaud. Le solide, lorsqu’ il fond, devient plus Ieger et miscible dans I’autre liquide. Des 
approximations des equations du mouvement selon Boussinesq sont faites pour determiner le comportement 
des champs de temperature et de con~ntration dans deux regions differentes : la region de couche limite a 
l’interface et la region turbulente dans la masse liquide. Par confrontation de la solution dans la couche 
limite et de celle dans le noyau turbulent, dans la zone de recouvrement, on obtient la dependance de la 
vitesse a differents parametres, dont le nombre de Grashof base sur le rapport de densitb bain-substrat, le 
nombre de Stefan exteme base sur la difference de temperature bain-sub&rat, et le nombre de Stefan 
inteme base sur la depression du point de congelation. Une comparaison entre la th&orie et les don&s 

experimentales existantes donne satisfaction. 

WARME- UND STOFFUBERGANG BEIM SCHMELZEN EINES MISCHBAREN 
STOFFES IN EINEM MIT FLUSSIGICEIT GEFULLTEN BEHALTER 

Zusammenfaasung-Der Schmelzvorgang bei freier Konvektion an einer festen Platte in einer he&n 
Fliissigkeit wird theoretisch untersucht. Der geschmolzene FeststotI hesitzt eine geringere Di~hte als 
die umgebende Fliissigkeit und ist mit ihr mischbar. Urn das Temperatur- und Str~mungsfeld fiir zwei 
verschiedene Be&he zu ermitteln, werden systematische ma&mat&he Niihenmgen der Bewegungs- 
gleichung von Boussinesq benutzt. Die beiden Bereiche sind die Grenzschicht an der Schmelzfront und 
die turbulente Kemstriimung in der umgebenden Fliissigkeit. Die Abhiingigkeit der Schmelzrate von 
verschiedenen Parametem wird durch Anpassung der Lijsungen ftir die beiden Bereiche Grenzschicht und 
Kemhereich in der Ubergangsregion zwischen beiden erhalten. Diese Parameter sind die Grashof-Zahl 
(gebildet mit dem Dichteunterschied zwischen schmelzender Substanz und umgebender Fliissigkeit), die 
HuBe.re Stefan-ZahI (gebildet mit der Temperaturdifferenz zwischen schmelzender Substanz und umge- 
bender Fliissigkeit) und die innere Stefan-Zahl (gebildet mit der ~~e~unkt~i~~~g). Die vor- 
gestellte Theorie wird mit vorhandenen experimentellen Werten verglichen, die Ubereinstimmung ist gut. 
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CBOsO~HOKOHBEKTkiBHbI@ TEIUIO- M MACCOIIEPEHOC IlPM l-IOCTYlIJlEHMl4 
-HCMflKOCTM B PACfLiIABJI~lQIQYlO l-fO&-fO~KY B IWOYECCE MX CMEUIEHHS 

AHIIOTaUHR-flpOBeLIeH0 TeopeTU’RCKot! u3yveHse ceo60n~o8 KOHBeKUWu npu nJlaBlleHuu TBepLlOrO 

cnw-Ka B 6o,~bmo~ 06aellre ropnreZi x~~~oc~~, ~axoAame~ca Han fair. Pacn~aa~6maaca +a3a nefqe 
NAKOCT~ u ch4emkiaaeTcs c Heir. C@opMynepoaaHa wcTeh5a ypawiewiH B npe6nkfxemiu 6yccmiecKa c 
Uenblo OUpeJIeJleHuK 3BOJIMlluu u3MeHeHuS nOnei% TeMUepaTypbI H KOHUeHTpaUuu B JlByX pa3JUiqHbtX 

o6nacrsx ~ewwix: norpamiworo cnoa Ha rpamue maimems u Typ6ySIeHTHOrO nnpa B o6aeMe xnn- 

KOCTu. nOJIy%Ha 3aBuCuMOCTb CKOpOCTu IInaBJleHuR OT pLl3Jlu'lHbIX peXCuMHblX napaMeTpOB, B TOM 

wime wcna rpacro+a, B ~o~opoe BXODRT omomefiue nnoTHocTe~ 0Kpy~a~~e~ ~KN~KOCTCI H nofi- 

nomu, memiee wcno Cre@asa, owoaamioe Ha pacleocru TeMnepaTyp ~A~KOCT~~ II nonnoxq R 
BHyTpCHNee 'IuCJlO CT@G3Ha. OCHOBaHHOe Ha flOHWKKeHI111 TOYKR 3aMep3aHu% &JIsl 3TOrO CWuBaJUiCb 

peLUeHua B o6nanu nep~e~euu~norpaH~qnorocnoK ~Typ6yneHTHOrO nApa.~pMcpaBweHnnTeopeec 
uMeK)LUuMuCI13KC~epuMeiiTaJlbHbIMu AaHHbIMu Haii.lJ‘2HO HX XO,,O,.“‘ZeCOOTBCTCTBMC. 


